Exploring Semantic Features for Producing Top-N Recommendation Lists from Binary User Feedback

نویسندگان

  • Nicholas Ampazis
  • Theodoros Emmanouilidis
چکیده

In this paper, we report the experiments that we conducted for two of the tasks of the ESWC’14 Challenge on Linked Open Data (LOD)-enabled Recommender Systems. Task 2 and Task 3 dealt with the top-N recommendation problem from a binary user feedback dataset and results were evaluated on the accuracy and diversity respectively of the recommendations produced in a Top-N recommendation list for each user. The DBbook dataset was used in both tracks in which the books had been mapped to their corresponding DBpedia URIs. Since the mappings could be used to extract semantic features from DBpedia, in all our experiments, we avoided the use of any collaborative filtering methods (e.g. user/item K-nearest neighbors and matrix factorization approaches) and instead focused exclusively on the semantic features of the items. Even though the performance of our methods did not beat the best performing approaches of other teams, our results indicate that it is indeed feasible to create effective recommender systems which fully understand the items they deal with by utilizing information from the Semantic Web.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

AHP Techniques for Trust Evaluation in Semantic Web

The increasing reliance on information gathered from the web and other internet technologies raise the issue of trust. Through the development of semantic Web, One major difficulty is that, by its very nature, the semantic web is a large, uncensored system to which anyone may contribute. This raises the question of how much credence to give each resource. Each user knows the trustworthiness of ...

متن کامل

AHP Techniques for Trust Evaluation in Semantic Web

The increasing reliance on information gathered from the web and other internet technologies raise the issue of trust. Through the development of semantic Web, One major difficulty is that, by its very nature, the semantic web is a large, uncensored system to which anyone may contribute. This raises the question of how much credence to give each resource. Each user knows the trustworthiness of ...

متن کامل

Linked Open Data-Enabled Recommender Systems: ESWC 2014 Challenge on Book Recommendation

In this chapter we present a report of the ESWC 2014 Challenge on Linked Open Data-enabled Recommender Systems, which consisted of three tasks in the context of book recommendation: rating prediction in cold-start situations, top N recommendations from binary user feedback, and diversity in content-based recommendations. Participants were requested to address the tasks by means of recommendatio...

متن کامل

Learning Discriminative Recommendation Systems with Side Information

Top-N recommendation systems are useful in many real world applications such as E-commerce platforms. Most previous methods produce top-N recommendations based on the observed user purchase or recommendation activities. Recently, it has been noticed that side information that describes the items can be produced from auxiliary sources and help to improve the performance of top-N recommendation s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014